Share |

Wednesday, September 10, 2008

Going Beyond the Standard Model


The Scientists by triggering the Hadron collision  experiment today  will be looking for new physics beyond the Standard Model – the framework devised in the 1970s to explain how sub-atomic particles interact.

The Standard Model comprises 16 particles – 12 matter particles and four force-carrier particles. The Standard Model has worked remarkably well so far.

But it cannot explain the best known of the so-called four fundamental forces: gravity; and it describes only ordinary matter, which makes up but a small part of the total Universe.

Also, one of the most important particles in the Standard Model – the Higgs boson – has yet to be found in an experiment.

Today, the Standard Model is regarded as incomplete, a mere stepping stone to something else. So the LHC should help reinvigorate physics' biggest endeavour: a grand theory to explain all physical phenomena in Nature.

However, some physicists point out that Nature has a habit of throwing curve balls. And some of the most exciting discoveries at the LHC could be those that no-one expects.

THE HUNT FOR THE HIGGS

There is an essential ingredient missing from the Standard Model. Without it, none of the 16 particles in the scheme would have any mass.

An extra particle is required to provide all the others with mass – the Higgs boson. This idea was proposed in 1964 by physicists Peter Higgs, Francois Englert and Robert Brout.

According to their theory, particles acquire mass through their interactions with an all-pervading field, called the Higgs field, which is carried by the Higgs boson. It is the only Standard Model particle that has yet to be observed experimentally.  More



 Dark Matter Dark Energy

All the matter that we can see in the Universe – planets, stars and galaxies – makes up a minuscule 4% of what is actually out there. The rest is dark energy (which accounts for 70% of the cosmos) and dark matter (26%).

Dark energy cannot be observed directly, but it is responsible for speeding up the expansion of the Universe – a phenomenon that can be detected in astronomical observations.

Artist's impression of dark matter distribution (Nasa/Esa/Richard Massey-Caltech)
Astronomers have mapped dark matter's distribution, but have no idea what it is

Like dark energy, dark matter can only be detected indirectly, as it does not emit or reflect enough light to be seen. But its presence can be inferred through its effects on galaxies and galaxy clusters.

Physicists know virtually nothing about the nature of either dark energy or dark matter. But they can speculate.

According to one idea, dark matter could be made up of "supersymmetric particles" - massive particles that are partners to those already known in the Standard Model.

A leading dark matter candidate is the neutralino, the lightest of these "super-partners". And some theoretical physicists have proposed a link between the Higgs mechanism and dark energy. More 


10 Dimensional world and String Theory

In addition to the four dimensions we already know about, string theory predicts the existence of six more.

Some physicists even think the existence of these extra dimensions could explain why gravity is so much weaker than the other fundamental forces. Perhaps, they argue, we are not feeling its full effects.

This might be explained if its force was being shared with other dimensions. If these extra dimensions do exist, the LHC could be the first accelerator to detect them experimentally.

At high energies, physicists could see evidence of particles moving between our world and these unseen realms. For example, they could see particles suddenly disappear into one of these dimensions.

Alternatively, particles originating from an extra dimension could suddenly appear in our world. More 

Two Dimensions of Time


No comments: