Share |

Tuesday, September 9, 2008

In Search of Higgs boson, the God Particle

Spending 9 billiom dollars, 6,500 scientists from 80 nationalities ignite proton collision at Cern's Large Hadron Collider (LHC) today. The experiment will begin and end in a fraction of millionth of a second and produce  vast quantities of data which needs a storage facility  equal to 56m CDs. Scientists are waiting to answer the biggest questions that exist in modern science. They want to test our understanding of the universe and find out if dark matter exists, whether the four dimensions of space-time are it or in fact there are eleven dimensions! They want to know why some particles have mass and some, like particles of light, don't. 
 

At present, anything big enough for us to see, from a star to a speck of dust, is known to obey one set of physical laws, but at the subatomic level, among those unimaginably tiny particles that are the building blocks of the universe, another set of laws apply. No one has definitively reconciled the two.
Cern scientists make final preparations


Moreover, the best explanation the human race has so far devised for explaining the behaviour of subatomic particles, the so-called Standard Model, is not a work of art, it is a monstrosity. Whereas Einstein's equation relating mass to energy is expressed in just characters, E=mc2, writing out the Standard Model goes on for page after ugly page of symbols.

And even then, it leaves an awkward gap. Put it this way: if you walked beneath the window of a school classroom, and a pupil dropped a feather on your head, you would not mind; but if he dropped a brick, that would hurt, because a brick is heavy and a feather is light. But not according to the Standard Model, because nowhere in the theory is there any indication that particles have mass. Down there among the subatomic particles, all is seemingly weightless. That is very annoying for those great artists who poke at the boundaries of theoretical physics. They want to know why, in the trillionth of a second after it all began with the Big Bang, stuff came into existence where there had been no stuff before. One answer, worked out in theory, assumes the existence of something called the Higgs boson, or more fancifully, the God particle.

To you or me, Higgs boson – if it exists – is so unimaginably tiny that it is no surprise no instrument has found it; but in the subatomic world, it is a monster, a particle so much vaster than all those quarks, Z bosons and other subatomic oddities that it can only exist for an immeasurable fraction of a second before it disintegrates.

Even the LHC will not catch a Higgs boson, if it exists. What the physicists expect, however, is that the machinery will pick up proof that a Higgs boson was there for a fraction of a microsecond, from the debris left behind from its disintegration.

If that happens, science has taken a giant leap forward. We will know something that previously we only supposed. Conversely, if the vast experiment at Cern does not produce a Higgs boson, the theoretical physicists will have to retrace their steps and think a whole new explanation for life, the universe and everything. But cosmologists – who study the biggest things in the universe – are hoping that the unprecedented experiment in Geneva will uncover "supersymmetric particles", because if they exist, they turn the key to one of the great mysteries of outer space – why are galaxies 10 times heavier that they appear to be?

There are two ways of estimating the total mass of a galaxy. You can either study what you can see, and deduce its total mass, or you can study the movement of the stars on the outermost edge of the galaxy, and calculate the gravitational pull. It has been done many times, and each time one of the two methods is used it produces a different result from the other. The discrepancies have been so consistent that the only satisfactory answer is that there is a vast amount of matter in the universe that has mass, but which cannot be seen or detected.



Read full story Andy McSmith

No comments: